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Abstract

In systems which learn a large number of rules (productions), it is important to match the
rules efficiently, in order to avoid the machine learning utility problem. — if the learned rules
slow down the matcher, the “learning” can slow the whole system down to a crawl. So
we need match algorithms that scale well with the number of productions in the system.
(Doorenbos, 1993) introduced right unlinking as a way to improve the scalability of the Rete
match algorithm. In this paper we build on this idea, introducing a symmetric optimization.
left unlinking, and demonstrating that it makes Rete scale well on an even larger class of
systems. Unfortunately, when left and right unlinking are combined in the same system. they
can interfere with each other. We give a particular way to combine them which we prove
minimizes this interference, and analyze the worst-case remaining interference. Finally, we
present empirical results showing that the interference is very small in practice. and that
the combination of left and right unlinking allows five of our seven testbed systems to learn
over 100,000 rules without incurring a significant increase in match cost.




1 Introduction

The goal of this research is to support large learned production systems; i.e., systems that
learn a large number of rules. This is important because if Al is to achieve its long-term goals,
Al systems (including rule-based systems) must be able to use vast amounts of knowledge.
In large systems it is crucial that we match the rules efficiently; otherwise the systems will
be very slow. In particular, we don’t want the match cost to increase significantly as new
rules are learned. Such an increase is one cause of the utility problem in machine learning
(Minton, 1988) — if the learned rules slow down the matcher, the net effect of learning can
be to slow down the whole system, rather than speed it up. For example, learned rules may
reduce the number of basic steps a system takes to solve problems (e.g., by pruning the
search space), but if the slowdown in the matcher increases the time per step, then this can
outweigh the reduction in the number of steps. This has been observed in several machine
learning systems (Minton, 1988; Etzioni, 1990a; Tambe et al., 1990; Cohen, 1990; Gratch
and DeJong, 1992). ‘

To avoid this slowdown, previous research on the utility problem from match cost has
taken three general approaches. One approach is simply to reduce the number of rules in the
system'’s knowledge base, by being selective about when to learn or which rules or types of
rules to learn, or by forgetting previously learned rules if they slow down the matcher enough
to cause an overall system slowdown (Minton, 1988; Etzioni, 1990b; Holder. 1992; Gratch
and DelJong, 1992; Greiner and Jurisica, 1992; Markovitch and Scott, 1993). Unfortunately,
this approach is inadequate for the long-term goals of AI because, given the current state
of match technology, it precludes learning a vast amount of knowledge. Moreover, it is
intuitively desirable to have Al systems that take advantage of every opportunity for learning,
rather than forgoing certain opportunities.

The second general approach is to reduce the match cost of individual rules, taken one
at a time. Many techniques have been developed for this (Tambe et al., 1990; Minton.
1988; Etzioni, 1990a; Pérez and Etzioni, 1992; Chase et al., 1989; Cohen, 1990; Kim and
Rosenbloom, 1993). This prevents just a handful of ezpensive rules from slowing the matcher
down to a crawl; thus, the system can learn more rules before an overall slowdown results.
Unfortunately, an overall slowdown can still result when a large number of individually cheap
rules exact a high match cost.

The third approach, and the one taken by this work, complements the second by reducing
the aggregate match cost of a large number of rules, without regard to the cost of each
individual rule. As (Doorenbos, 1993) showed, the use of sophisticated match algorithms
can sometimes reduce the matcher slowdown due to learning a large number of rules to the
point where it is unproblematic. (Doorenbos, 1993) introduced the idea of right unlinking in
the Rete match algorithm (Forgy, 1982), and showed that for at least one “natural” system
(not designed just for match algorithm performance), Dispatcher, right unlinking eliminated
virtually all the matcher slowdown associated with learning 100,000 rules. However, for
another natural system, Assembler, the matcher was still slowing down to a crawl as the
system learned 35,000 rules.

In this papcr we build on the idea of right unlinking. We begin by reviewing in Section 2
the basic Rete algorithm and right vnlinking. Section 3 examines the cause of the siowdown




in the Assembler system, and shows how it can be avoided by adding another improvement
to Rete: left unlinking. Left unlinking is essentially symmetric to right unlinking. Unfor-
tunately, these optimizations are not completely orthogonal: when combined in the same
system, they can interfere with each other. In Section 4 we give a particular way to combine
them which we prove minimizes this interference. The worst-case remaining interference is
analyzed in Section 5. Finally, Section 6 presents empirical results, showing that in contrast
to the worst case, the interference is very small in practice. The evaluation is done with
respect to a set of seven systems — including the aforementioned Dispatcher and Assem-
bler — implemented in Soar (Laird et al., 1987; Rosenbloom et al., 1991), an architecture
which learns new rules through chunking (Laird et al., 1986). The combination of both left
and right unlinking allows five out of the seven systems to learn over 100,000 rules without
incurring a significant increase in match cost.

2 Background

We begin by briefly reviewing the Rete algorithm. As illustrated in Figure 1, Rete uses a
dataflow network to represent the conditions of the productions. The network has two parts.
The alpha part performs the constant tests on working memory elements. Its output is stored
in alpha memories (AM), each of which holds the current set of working memory elements
passing all the constant tests of an individual condition. The alpha network is commonly
implemented using a simple discrimination network and/or hash tables. and thus is very
efficient, running in approximately constant time per change to working memory. Previous
studies have shown that the beta part of the network accounts for most of the match cost
(Gupta, 1987). The beta part contains join nodes, which perform the tests for consistent
variable bindings between conditions, and beta memories, which store partial instantiations
of productions (sometimes called tokens). When working memory changes, the network is
updated as follows: the changes are sent through the alpha network and the appropriate
alpha memories are updated. These updates are then propagated over to the attached
join nodes (activating those nodes). If any new partial instantiations are created. they are
propagated down the beta part of the network (activating other nodes). Whenever the
propagation reaches the bottom of the network, it indicates that a production’s conditions
are completely matched.

An important feature of Rete is its sharing of nodes between productions. When two or
more productions have a common condition, Rete uses a single alpha memory for it, rather
than creating a duplicate memory for each production. Furthermore, when two or more
productions have the same first few conditions, the same parts of the network are used to
mat:h those conditions, avoiding duplicating match effort across those productions.

Although Rete is one of the best standard match algorithms available, (Doorenbos, 1993)
observed that neither it nor its major alternative — Treat (Miranker, 1990) — scales well
with the number of rules in the Dispatcher and Assembler systems: both Rete and Treat slow
down linearly in the number of rules. However, (Doorenbos, 1993) described an optimization
for Rete, right unlinking, which eliminated this linear slowdown in Dispatcher (but not
Assembler).

To understand what right unlinking is, consider the activation of a join node from its
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Figure 1: Example network used by Rete for several productions (left) and instantiated
network for one production (right).

associated alpha memory (henceforth called a right activation) — this happens whenever a
working memory element is added to or removed from its alpha memory. Right unlinking is
based on the observation that if the join node’s beta memory is empty, then no work need
be done: the working memory element cannot match any items in the beta memory. hecause
there aren’t any items there. So if we know in advance that the beta memory is empty., we
can skip the right activation of that join node. We refer to right activations of join nodes
with empty beta memories as null right activations.

We modify the Rete algorithm to incorporate right unlinking as follows. On each alpha
memory there is a list of associated join nodes. Whenever a join node's beta memory becomes
empty, we splice that join node out of the list on its associated alpha memory. When the
beta memory later becomes nonempty again, we splice the join node back into the list. Now
while a join node is unlinked from its alpha memory, it never gets activated by the alpha
memory. Note that since the only activations we are skipping are null activations — which
would not yield a match anyway — this optimization does not affect the set of complete
production matches that will be found.

As (Doorenbos, 1993) showed, in the Dispatcher system, the slowdown in the standard
Rete algorithm is almost entirely due to a linear increase in the number of null right activa-
tions. So right unlinking is very effective in avoiding the slowdown in Dispatcher. However,
in the Assembler system, it yields only a constant speedup factor of about three, because
null right activations are not the only major source of slowdown there.
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Figure 2: Part of the Rete network for Assembler.

3 Left Unlinking

For the Assembler system, there appears to be a second major source of slowdown: a signif-
icant linear increase in the number of null left activations. This system is a cognitive model
of a person assembling printed circuit boards (e.g., inserting resistors into the appropriate
slots). Most of the rules it learns are specific to the particular slot on the board being dealt
with at the moment. The first few conditions in these rules are always the same, but the next
condition is different in each rule. As illustrated in Figure 2, this leads to a large fan-out
from one beta memory. The first few conditions in all the rules share the same nodes. but
at this point, sharing is no longer possible because each rule tests for a different slot. As the
system deals with more and more slots, more and more rules are learned. and the fan-out
increases linearly in the total number of rules.

Now, whenever all of the first few conditions of these rules are true, the dataflow in
the Rete network reaches this beta memory and a token is stored there. This token is
then propagated to all the memory’s child join nodes, left activating those nodes. Since the
number of such nodes is increasing linearly in the number of rules, the work done here is also
linearly increasing. However, most of this work is wasted. Since the system is only focusing
its attention on a few slots at a time, most of the join nodes have empty alpha memories.
Their activations are therefore null left activations, and no new matches result from them.
Although each individual null left activation takes very little time to execute, the number of
null left activations (per change to working memory) is linearly increasing, and so this can
grow to dominate the overall match cost.

To avoid doing all this fruitless work, we can incorporate left unlinking into the Rete
algorithm. Left unlinking is symmetric to right unlinking: whereas with right unlinking, a
join node is spliced out of its alpha memory’s list of successors whenever its beta memory is
empty, with left unlinking, a join node is spliced out of its beta memory’s list of successors
whenever its alpha memory is empty. Thus, in Figure 2, most of the join nodes would
be unlinked from the beta memory, so they would not be activated whenever the first few
conditions in the rules are true. As with right unlinking, the only activations we are skipping
are null activations — which would not yield any matches anyway — so this optimization




leaves the correctness of the Rete algorithm intact.!

Left unlinking is expected to be useful in many systems in addition to Assembler. The
large fan-out from beta memories could arise in any system where the domain has some
feature with a large number of possible values, and the learned rules are specific to particular
values of that feature. For instance, in a robot domain, if the appropriate action to be
taken by the robot depends on the exact current room temperature, it might learn a set of
rules where each one checks for a different current temperature reading. In a system with a
simple episodic memory, learned rules implementing that memory might ail contain different
timestamps in their conditions. In cases like these, learned rules will often share nodes in
the Rete network for their early conditions, up to but not including the conditions testing
the feature in question. If this feature can have only one value at a time, then most of the
rules will fail to match at this condition, and left unlinking will avoid a large number of
null left activations. In addition, we will see in Section 6 that left unlinking can often bhe
beneficial even in systems where the fan-out isn’t especially large and null left activations
don’t dominate the overall match cost.

4 Combining Left and Right Unlinking

Since right unlinking avoids all null right activations, and left unlinking avoids all null left
activations, we would like to combine both in the same system and avoid all null activations
entirely. Unfortunately, this is not possible, because the two optimizations can interfere with
each other. The problem arises when a join node’s alpha and beta memories are both empty.
Left unlinking dictates that the node be unlinked from its beta memory. Right unlinking
dictates that the node be unlinked from its alpha memory. If we do both. then the join node
will be completely cut off from the rest of the network and will never be activated again.
even when it should be. The correctness of the match algorithm would be lost. To ensure
correctness, when a join node’s memories are both empty, we can use either left unlinking or
right unlinking, but not both. But which one? If we use left but not right unlinking in this
situation, then we can still suffer null right activations. If we use right but not left unlinking.
then we can still suffer null left activations in this situation. Thus, no scheme for combining
left and right unlinking can avoid all null activations.

If both memories are empty, which one should the join node be unlinked from? A number
of possible heuristics come to mind. We might left unlink nodes whose beta memories have
sufficiently large fan-out (as in Figure 2). Or we might do a trial run of the system in which
we record how many null left and right activations each node incurs; then on later runs. we
would unlink from the side that incurred more null activations in the trial run.

Remarkably, it turns out that there is a simple scheme for combining left and right
unlinking which is not only straightforward to implement, but also provably optimal in
minimizing the residual number of null activations.

Definition: In the first-empty-dominates scheme for combining left and right unlink-

1We ignore here the case of negative conditions, which test for the absence of particular items in working
memory. Nodes for negative conditions cannot be left unlinked without destroying the correctness of the
algorithm. Fortunately, they are typically much less common than positive conditions.(Gupta, 1987)




ing, a join node J with alpha memory A and beta memory B is unlinked as follows. (1) If
A s empty but B is nonempty, it is linked to A and unlinked from B. (2) If B is empty but
A is nonempty, it is linked to B and unlinked from A. (3) If A and B are both empty, it
is (i.e., remains) linked to whichever memory became empty earlier, and unlinked from the
other memory.

To see how this works and how it falls naturally out of a straightforward implementation.
consider a join node that starts with its alpha and beta memories both nonempty (so it is
linked to both). Now suppose the alpha memory becomes empty. We unlink the join node
from its beta memory (i.e., left unlink it). As long as the alpha memory remains empty.
the join node remains unlinked from the beta memory — and hence. never gets activated
from the beta memory: it never hears about any changes to the beta memory. Even if the
beta memory becomes empty, the join node doesn’t get informed of this, so nothing changes
— it remains left unlinked — and the empty alpha memory essentially “dominates™ the
empty beta memory because the alpha memory became empty first. The join node remains
unlinked from its beta memory until the alpha memory becomes nonempty again.

The definition of first-empty-dominates ignores the possibility that a join node could
start with both its memories empty. When a rule is learned and added to the Rete net.
some of its join nodes may have both memories empty. In this case, we can pick one side by
any convenient method. (In the current implementation, the node is right unlinked.) The
worst that can happen is that we pay a one-time initialization cost of one null activation for
each join node; this cost is negligible in the long run. Once one of the memories becomes
nonempty, we can use first-empty-dominates.

It turns out that first-empty-dominates is the optimal scheme for combining left and right
unlinking: except for the possible one-activation initialization cost, it minimizes the number
of null activations. Thus, this simple scheme yields the minimal interference hbetween left
and right unlinking. This result is formalized as follows:

Theorem 1 (Optimality of First-Empty-Dominates) Any scheme for combining left
and right unlinking must incur at least as many null activations of each join node as first-
empty-dominates incurs, ignoring the possible one-activation initialization cost.

Proof: For any given join node, Figure 3 shows the four states its alpha and beta
memories can be in: the number of items in each memory can be 0 or nonzero (NZ). The
figure also shows all the possible state transitions that can occur on changes to the alpha
and beta memories. All the transitions into and out of (NZ,NZ) are non-null activations.
Unlinking never avoids non-null activations, so the join node will incur one activation on
each of these transitions no matter what unlinking scheme we use.

The remaining transitions (labeled A-F) are null activations if no unlinking is don¢ but
the join node will not be activated on these if it is unlinked from the appropriate memory.
Under first-empty-dominates, the join node is always unlinked from its beta memory when
in state (NZ,0). This means it will not incur a null activation on transition A or E. Similarly,
it is always unlinked from its alpha memory when in state (0,NZ), so it will not incur a null
activation on transition B or F. This leaves just C and D to consider. In state (0,0), the join
node is unlinked from its beta memory if its alpha memory became empty before its beta
memory did — i.e., if it arrived at (0,0) via transition A — and unlinked from its alpha
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add to or rem.
from either mem

add to or rem.
from alpha mem

add to or rem.
from beta mem

Figure 3: Possible states of a join node and its alpha and beta memories.

memory otherwise — i.e., if it arrived via B. (This ignores the case where the node starts
at (0,0).) This means a null activation is incurred by first-empty-dominates only when D
follows A or when C follows B.

Now, in any scheme for combining left and right unlinking, the join node must incur at
least one null activation when taking transition A and then D — the reason is as follows.
The join node cannot start out unlinked from both sides: as noted above, this would destroy
the correctness of the algorithm. If it starts out linked to its beta memory. it incurs a null
activation on transition A. On the other hand, if it starts out linked to its alpha memory.
it incurs a null activation on transition D. (The link cannot be “switched” after transition
A but before D — that would require executing a piece of code just for this one join node.
which logically constitutes an activation of the node.) So in any case, it incurs at least one
null activation.

A symmetric argument shows that in any unlinking scheme. at least one null activation
must be incurred when taking transition B and then C. Since these are the only causes of
null activations in first-empty-dominates, and it incurs only a single null activation on each
one, it follows that any scheme must incur at least as many null activations. Q.E.D.

5 Worst-Case Analysis

How bad could the interference between left and right unlinking be? It would be nice if
the residual number of null activations per change to working memory were bounded. but
unfortunately it is not — other than being bounded by n, the total number of join nodes in
the network (a very large bound). However, null activations don’t occur all by themselves —
they are triggered by changes to alpha and beta memories. If it takes a lot of triggering
activity to cause a lot of null activations, then null activations won’t dominate the overall
match cost. The question to ask is: “By what factor is the matcher slowed down by null




activations?” To answer this, we’ll look at

def Number of activations of all nodes

v — — ———
Number of activations of all nodes, except null join node activations

- 14 Number of null join node activations

Number of activations of all nodes, except null join node activations’

Note that v is actually a pessimistic answer to this question, because it assumes all activa-
tions have the same cost, when in fact null activations take less time to execute than other
activations.

Without any unlinking, or with left or right unlinking but not hoth, it is easy to show that
v is O(n) in the worst case, and in fact this often arises in practice, as shown in {(Doorenbos.
1993) and in Section 6 below. However, the first-empty-dominates combination of left and
right unlinking reduces this theoretical worst case to O(\/n). as we prove below.

Before we get to the worst-case analysis, two assumptions must be made. First, we will
ignore the possible initial null activation of each join node which starts out with its alpha
and beta memories both empty — of course, this initialization cost is negligible in the long
run. Second, we will assume that no two join nodes use both the same alpha memory and
the same beta memory. This is the normal situation in practice.?

It turns out that with the first-empty-dominates combination of left and right unlinking,
v <1+ %\/ﬁ To see how the worst case can arise, consider a svstem with & alpha memories.
each initially with one item in it; k£ beta memories, each initially empty: and n = k? join
nodes, one for each pair of alpha and beta memories. Now suppose that in each alpha
memory, the one item in it is removed; following this. one item is first added to and then
removed from every beta memory; and finally, a new item is added to each alpha memory.
This sequence of 4k activations of alpha and beta memories causes every join node to undergo
transitions B, C, A, and D (see Figure 3), incurring two null activations. for a total of 2&?
null activations. Hence v = 1 + 24—’;; =1+ -‘25 =1+ 1/n. That this value of v is actually the
worst one possible is proved in Theorem 2 below (which actually proves a slightly stronger
statement). To prove the theorem, we will need the following lemma.

Lemma 1 Let (zi;) be an A x B matriz with all x;; > 0. Let S be the sum of all entries, R
be the sum of the row mazima, C be the sum of the column mazxima. and N be the number
of nonzero entries. Then S* < NRC.

Proof: Let r; denote the maximum of row i, and ¢; denote the maximum of column
7. Recall that the Cauchy-Schwarz inequality from linear algebra tells us that for vectors u
and v of real numbers, (u-v)? < (u-u)(v+v). Take u to be a vector of N I's, and v to be
a vector containing the N nonzero entries in the matrix. Then usv = S, u-u = VN, and the

%It is possible for two or more join nodes to use the same alpha and the same beta memories — if there
are productions whose conditions test exactly the same constants in the same places, but have different inter-
condition variable binding consistency checks — but this is not very common in practice. Even in theory,
the number of join nodes using the same pair of memories can be bounded independent of the number of
productions in the system. If this bound is ¢, the worst-case bound in Theorem 2 becomes 1 + /.




Cauchy-Schwarz inequality gives us the first step below:

A B A B A B
SENE TSNS Srg =N (zr,-) ()_jcj) _ NRC.
=1

=1 j=1 i=1 =1 i=1

Theorem 2 (Worst Case Null Activations in First-Empty-Dominates) Consider
the first-empty-dominates combination of left and right unlinking, ignoring the one initial
null activation of each join node that starts with its alpha and beta memories both empty.
Assume that for each pair of alpha and beta memories, there is at most one join node using
that pair. Over any finite sequence of changes to working memory, v < 1 + %ﬁ, where N
is the number of join nodes incurring at least one null activation over that sequence.

Proof: Let the alpha memories in the network be numbered from 1 to A. where A is the
total number of alpha memories, and let a; be the number of activations of (i.e.. items added
to or removed from) alpha memory :. Likewise, let the beta memories be numbered from 1
to B, and let b; be the number of activations of beta memory j. If there is a join node using
alpha memory ¢ and beta memory j, then let z;; be the number of null activations it incurs
over the given sequence of changes to working memory. If there is no join node using alpha

memory ¢ and beta memory j, then let z;; be zero. Finally, let S denote the total number

of null activations of all join nodes: § % ¥4 5 1 7;j. Note that this S is the same as in

=1
the statement of Lemma 1. We will later apply the lemma to this matrix (z;;).

Consider z;;, the number of null activations incurred by the join node (call it .J) testing
alpha memory ¢ and beta memory j. Under first-empty-dominates. and ignoring the one
initial null activation if : and j are both initially empty, each null activation of .J requires
one change to alpha memory : and one change to beta memory j (see Figure 3 — each null
activation requires a sequence of two transitions: one change to the alpha and one to the
beta memory). Thus, for .1l ¢ and j, a; > z;; and b; > &;;.

It follows that for all ¢, a; > maxf’__.1 z;;; and for all j, b; > maxl, r;;. Thus. the total

number of activations of all alpha memories is at least R oo Aymax2 | ri;. and the total

o . def
number of activations of all beta memories is at least C = T8, max, ry;.

Now consider v. By the definition of v, and since R and C are lower bounds on the
number of memory activations, we have v <1 + ﬁg. Then

<14 52 =14+ 5 <1 5 =1 ! 7
Vs (R+C) (R-Cy+arc = '""Wirc = " T3V&Re

Applying Lemma 1, we get » < 1 + 1V/N. (Q.E.0.)

6 Empirical Results

In Section 3, we introduced left unlinking as a way to avoid the matcher slowdown associated
with increasing fan-outs from beta memories in systems like Assembler. After presenting
in Section 4 the optimal way to combine left and right unlinking so as to minimize the
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interference between them, we analyzed in Section 5 how much interference there can be in
the worst case. This section examines what happens in practice — how much interference
is there in practice, and how well does combined left and right unlinking avoid matcher
slowdown?

To answer these questions, we ran experiments using a set of seven Soar systems, including
the aforementioned two. Assembler (Mertz, 1992) is a cognitive model of a person assembling
printed circuit boards. Dispatcher (Doorenbos et al., 1992) is a message dispatcher for a
large organization and uses an external organizational database. Merle (Prietula et al., 1993)
schedules tasks for an automobile windshield factory. Radar (Papageorgiou and (arley,
1993) learns to classify aircraft radar images (specified as simple feature vectors) as friendly,
neutral, or hostile. SCA (Miller and Laird, 1991) is a Soar system that performs traditional
concept acquisition. Two versions of SCA were used: SCA-Fixed always focuses its attention
on the same features of each training example, whereas SCA-Rand focuses on a different
randomly chosen set of features on each training example. This leads to much better sharing
in the Rete network for SCA-Fixed than SCA-Rand, and consequent matcher performance
differences. Finally, Sched (Nerb et al., 1993) is a computational model of skill acquisition
in job-shop scheduling. These seven systems provide a good test suite because they use a
variety of problem-solving methods in a variety of domains, and none was designed for these
experiments. For each system, a problem generator was used to create a set of problem
instances; the system was then allowed to solve the sequence of problems, learning new rules
as it went along. Each system learned at least 100,000 rules.

Table 1 shows, for each system, the number of null and non-null join node activations per
working memory change, averaged over the course of the whole run. For null activations. four
different numbers are given, corresponding to four different match algorithms: the basic Rete
algorithm without any unlinking, Rete with left but not right unlinking, Rete with right but
not left unlinking, and Rete with the first-empty-dominates combination of left and right
unlinking. The table shows that without any unlinking, or with left unlinking oulyv. the
matcher is essentially swamped by null activations in all the systems. With right unlinking
but no left unlinking, there are still a large number of null (left) activations in both Assembler
and Radar, and a fair number in Sched. Finally, with left and right unlinking combined. the
number of null activations is very small in all the systems. Thus, the interference between
left and right unlinking turns out to be insignificant in practice, at least for this diverse set
of systems.

Returning to our second question — How well does combined left and right unlinking
avoid matcher slowdown? Figure 4 shows the match cost, in CPU time per change to working
memory, for each of the systems.? The match cost is plotted as a function of the total number
of rules in the system. The four lines on each graph correspond to the four match algorithms
described above. (Note that the vertical axes on the graphs have different scales — the match
cost varies across systems.) The figure shows that without right unlinking, all the systems
suffer a major linear slowdown as the system learns more and more rules. The addition of
left unlinking (in combination with right unlinking) enables both Assembler and Radar to

3Times are for Soar version 6.0.6 (modulo changes to the matcher) on a DECstation 5000/200. Many of
the runs without unlinking became so slow that time limitations forced them to be stopped at much less
than 100,000 rules.
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Join node activations per change to working memory:
Null, when using this type of unlinking:

System # of rules | Non-null | None | Left only { Right only Both
Assembler 105,308 15.4 | 2214.8 1711.5 503.3 0.11
Dispatcher 115,962 19.6 | 12484 1234.3 14.0 0.16
Merle 102,048 22.8 | 7561.7 7548.3 13.4 0.23
Radar 105,385 9.8 | 1570.7 1482.8 87.9 0.12
SCA-Fixed 108,799 7.1 2302.9 2301.7 1.2 0.20
SCA-Rand 106,853 13.6 | 2338.2 2333.4 4.3 2.29
Sched 117,386 21.7 | 4020.1 3976.0 141 0.22

Table 1: Average number of join node activations per change to working memory on each
system, with different versions of the matcher.

avoid a significant linear slowdown as the number of rules increases, and Sched to avoid a
slight linear slowdown. This is because these three systems have increasing fan-outs from
beta memories, as discussed in Section 3. Finally, the addition of left unlinking to right
unlinking reduces the match cost slightly (7-15%) in most of the other systems.? Thus. not
only is the addition of left unlinking to right unlinking crucial in systems where fan-outs
from beta memories grow large, but it can be helpful in other systems, too.

7 Conclusions and Future Work

Although right unlinking avoids matcher slowdown due to increasing null right activations.
it is insufficient for many systems which learn rules specific to one value of a domain feature
with many possible values. In such systems, we can avoid the increase in null left activa-
tions by using left unlinking. Left and right unlinking have the potential to interfere with
each other — significantly in the worst case — but the first-empty-dominates combination
minimizes this interference and makes it very small in practice.

This paper dealt with networks containing just binary joins — every join node has exactly
two input memories. Unlinking can be generalized to k-ary joins: if any one of the & input
memories is empty, the node can be unlinked from each of the & — | others (Barrett, 1993).
Finding extensions of Theorems | and 2 for A-ary joins remains a topic for future work.

Although the remaining number of null activations is insignificant, this still leaves two
other potential causes of matcher slowdown: increasing non-null activations (this appears to
be the main source of the remaining ~2.8-fold slowdown in SCA-Rand), and increasing time
per activation (this appears to be the main source of the remaining ~2.5-fold slowdown in
Merle). The magnitude of the slowdown from these effects is much smaller than that from

*Adding left unlinking can also slow the matcher down by a small factor, since it adds some overhead
to each node activation. If this small factor is not outweighed by a large factor reduction in the number of
activations, a slowdown can result. This happens in some of the systems when left unlinking is used alone:
when (null) right activations are numerous, avoiding null left activations only reduces the total number of
activations by a very small factor. This also happens in SCA-Fixed, where adding left unlinking to right
unlinking increases the match cost 4%.
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Figure 4: Performance of the matcher on each of the systems.

null activations in the unmodified Rete algorithm, but it is still significant. Determining
under what circumstances these effects occur and finding ways to avoid them are therefore
important areas for future work.
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